
www.manaraa.com

LETTER

An ill-posed boundary condition was inadvertently
implemented when deriving the expression to
characterize deformation of neurons
Brenda Farrella,1

Ling et al. (1) suggest that the exquisite subnanometer
voltage-dependent motility observed in cultured neu-
rons results in part from voltage-dependent tension
changes at the membrane and are pseudolinear with
the transmembrane potential, Ψ. Unfortunately, they
(1) modeled the tension change with an expression by
Zhang et al. (2) that was derived with ill-posed bound-
ary conditions (3) and has been subsequently over-
looked by others (4).

The starting expression used by Zhang et al. (2)
arises from electro-capillary phenomena that de-
scribed charging at a polarizable electrode that is ini-
tially uncharged (polarization charge density, q≡ 0),
and forms an electrical double layer upon application
of an external electric field (q≠ 0). Upon changing the
potential, U, at the electrode, the electrical double
layer adjusts itself to change the interfacial tension,
τ, according to q=− ∂τ=∂U( )T ;  μ;  P (T ; temperature; μ,
chemical potential; P; pressure). Integration of this ex-
pression requires knowledge of the relationship be-
tween q and U (5) and the potential of zero charge,
U0, which is measurable for a polarizable electrode like
mercury, hence τ U( )= τ0 − 1=2C( )× U−U0( )2 (C, spe-
cific capacitance of double layer). In contrast, biolog-
ical membranes are naturally charged and double
layers form spontaneously at the interfaces when im-
mersed in solutions (6). The difficulty is to establish the
potential of zero charge for biological membranes.
Zhang et al. (2) wrote the Lippmann expression by
equating the charge density at each plasma membrane
leaflet in terms of the surface potential at each interface
and the tension of each leaflet. They then integrated
these two expressions with the same boundary condition

used to integrate a polarizable electrode, namely that
the membrane behaves like an electric condenser with
a plate spacing equal to the Debye length. They de-
fined the condition for the potential of zero charge
when the membrane tension at each leaflet is at a max-
imum, i.e., τ= τ0, then q≡ 0, where the surface poten-
tials on each leaflet are equivalent to zero, but they did
this without showing when, how, or whether this con-
dition becomes true. They then used the Poisson–
Boltzmann (PB) equation to write a separate expression
for the surface potential at each interface, while without
justification, they made the assumption that voltage
drop across the membrane is equivalent to Ψ. This as-
sumption requires that the surface potential of each leaf-
let is identical. They then derived an expression for
tension by substituting the PB expressions into their in-
tegrated relationships. This expression, the right-hand
side of equation 2, was used by Ling et al. (1).

We showed (3) that tension change is parabolic with
respect to the transmembrane potential, as also reported
(7) to explain voltage-dependent pressure differences in
squid, and by theorems that describe action potentials in
neurons (8). This is also in agreement with interfacial ten-
sion at droplet interface bilayer membranes (9) and for
electrowetting of dielectrics (10). The continued use of
an expression that was poorly constructed and suggests
that tension is pseudolinear with the transmembrane po-
tential serves only to confuse the interpretation of such
motility (1) measurements.
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